Abstract:
Generalized Aggressive Periodontitis (GAgP) is characterized by edentulism at an early stage in life where most patients with GAgP are treated with removable partial or full dentures. While evidence suggests the use of dental implants in these patients, controversy regarding the success of dental implant placements continues. Most notably, there are methodological issues of defining the precise success/failure using the conventional clinical and radiographical tools. The following case illustrates the multidisciplinary management and successfully rehabilitation of a young patient with GAgP and extensive maxillary and mandibular alveolar bone resorption. Clinical measurements were accompanied by conventional radiographic analysis at baseline and after 24 months. The achieved a functional and esthetic treatment of a young aggressive periodontitis patient by dental implants was presented.
Implant Supported Full-Mouth Restoration in a Young Patient with Generalized Aggressive Periodontitis

Dr. Cenker Koyuncuoglu1, Dr. Kerem Calisir2, Dr. Isil Minoglu-Saylan3, Dr. Zeynep Yassibag3, Dr. Suleyman Metin3, Prof. Dr. Ozen Tuncer3, Dr. Alpdogan Kantarci4

1 Department of Periodontology, Faculty of Dentistry, Istanbul Aydin University, Istanbul, Turkey
2 Department of Prosthodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
3 Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
4 Forsyth Institute, Department of Periodontology, Cambridge, MA, USA

Corresponding Author:

Cenker Koyuncuoglu, DDS, PhD

Istanbul Aydin University, Faculty of Dentistry

Department of Periodontology

Bahcelievler Mh., Izzettin Calislar Cd., No: 31

Bahcelievler, Istanbul

34180 Turkey

Phone: 0090 532 7000867

Fax: 0090 212 442 61 46
Abstract

Generalized Aggressive Periodontitis (GAgP) is characterized by edentulism at an early stage in life where most patients with GAgP are treated with removable partial or full dentures. While evidence suggests the use of dental implants in these patients, controversy regarding the success of dental implant placements continues. Most notably, there are methodological issues of defining the precise success/failure using the conventional clinical and radiographical tools. The following case illustrates the multidisciplinary management and successfully rehabilitation of a young patient with GAgP and extensive maxillary and mandibular alveolar bone resorption. Clinical measurements were accompanied by conventional radiographic analysis at baseline and after 24 months. The achieved a functional and esthetic treatment of a young aggressive periodontitis patient by dental implants was presented.

Keywords: aggressive periodontitis; Dental implants; bar-retained overdentures

Introduction

Aggressive periodontitis is characterized by rapid loss of attachment and destruction of the periodontal ligament and bone in otherwise systemically healthy individuals (1). Patients with generalized aggressive periodontitis (GAgP) demonstrate proximal attachment loss affecting at least three teeth other than the first molars and incisors. These patients are usually young individuals under 30 years of age with familial aggregation (2) and a high tendency toward recurrence (1). The major challenge in treating the individuals with GAgP is the edentulism at a very young age when removable prosthetic restorations are usually not favored by the patients. Dental implant-supported restorations present a viable treatment.
option in young patients with edentulism; restoring masticatory function, phonetics, and esthetics. Yet, there is a controversy on the use of dental implants in GAgP patients; the evidence is limited and literature is inconclusive on the long-term outcomes of implant therapy (3). In one such study for example, implants were placed in fully edentulous maxilla and partially edentulous mandible. Continuous abscess formation was observed and three of the maxillary implants and one of the mandibular implants were removed within two months of insertion (4). The success rate of dental implants in patients previously treated for GAgP was approximately 10% below that of patients with a history of generalized chronic adult periodontitis (5). While the success rate could be acceptably high, the possibility of continuous attachment and bone loss occurring around the implants placed in the GAgP patients could not be ruled out. Thus, the controversy continues and new studies with new methodologies to evaluate and define “success” are needed. The following case illustrates the rehabilitation of a young patient with dental implants.

Case Description

A 23-year old female patient was referred to Department of Periodontology, Faculty of Dentistry, University of Istanbul with symptoms of pain, bleeding and swelling of the gingiva, halitosis and extensive mobility of teeth. Patient was a non-smoker and did not present any systemic health problems. Marginal gingiva appeared edematous and extensive bleeding was noted (Figure 1A). Initial clinical evaluation and the panoramic radiography illustrated severe and generalized bone resorption especially around the posterior teeth (Figure 1B). Detailed periodontal examination showed that bleeding and plaque scores were 100% with supra- and subgingival calculus deposition. The probing depths ranged between 4 and 11 mm (Table 1).
Multiple teeth presented with extensive mobility and pathological tooth migration was observed on the anterior teeth. The results of blood count, blood glucose, HbA1c, acid and alkaline phosphatase levels were in normal ranges (Table 2). PCR-based (Eppendorf, Mastercycler Personal, Hamburg-Germany) microbial analyses showed the presence of Porphyromonas gingivalis and Treponema denticola in microbial dental plaque. Clinical and radiographical examination and microbial analyses led to the diagnosis of generalized aggressive periodontitis.

Cone Beam Computed Tomography (NewTom 9000 CBCT, Verona, Italy) was used to analyze the tissue architecture and implant planning (Figure 1C). Initial stage of the therapy included extraction of the unsalvageable teeth, systemic antibiotic therapy (Amoxicillin, 500 mg, 125mg Clavulanic Acid-3x1 + Metronidazole, 500 mg- 3x1; Augmentin®, GSK, Gebze, Turkey and Flagyl®, Eczacibasi Rhone Poulenc Pharmaceutical Marketing Co., Istanbul, Turkey), and scaling and root planing (Figure 1D). Detailed oral hygiene instructions were given. Temporary immediate prosthesis were prepared for maxilla and mandible. At this initial stage, we have used a staged extraction approach in order to provide support for the placement of immediate dentures (Figure 1E). Therefore, teeth numbered 17, 15, 28, 38, and 48 were kept even with a minimal bone support.

Definitive treatment plan included fabrication of mandibular and maxillary implant supported-bar retained overdentures. In order to avoid further bone loss after the extractions, we have used a delayed immediate implant placement approach. One month after the extractions, 4 implants (Bränemark System, MkIII TiU, Nobel Biocare, Göteborg, Sweeden) were placed in maxilla and 4 implants were placed in mandible anterior at 35 N torque. After six months, the healing abutments were connected and teeth numbered 18,17, and 15 were extracted (Figure 2A,2B,2C). At this stage, provisional dentures were further modified. For the final construction of the restorations, individual trays were fabricated and impressions
were taken with polyvinylsiloxane (Affinis, Putty Soft and Affinis, Regular Body Microsystem, Coltène/Whaledent GmbH + Co. KG Langenau/Germany) using an open-tray technique. Wax and metal framework try-in for the maxilla and mandibula were prepared (Figure 2D,E). In order to improve the esthetic results; light-cured microfilled composite resin (Gradia Indirect, GC America Inc, IL, USA) combined with composite gingival material (GC Gradia Gum, GC America Inc, IL, USA) were used. Completion of the restorations is shown in Figure 2F-G.

A daily maintenance care was instructed with an interdental brush (Curaprox Soft Implant Brush CPS 508, Curaden Swiss, Istanbul, Turkey), superfloss (Curaprox Bridge & Implant Floss DF844, Curaden Swiss, Istanbul, Turkey) and a single toothbrush (Curaprox Single CS 1009, Curaden Swiss, Istanbul, Turkey). Professional maintenance program was instituted with periodontal and peri-implant recall visits every 3 months following delivery of the implant supported overdentures. Periodontal and peri-implant conditions were stable over a 24-month follow-up period (Figure 3A,B)

Discussion

Aggressive periodontitis presents great challenges in treatment and prosthodontic rehabilitation. The remaining dentition is often compromised and prevents sufficient retention of fixed or removable partial dentures. In GAgP patients, an interdisciplinary approach is essential to evaluate, diagnose, and restore the function and esthetic problems. Such treatment plans require extensive planning and careful execution at every stage utilizing a combination of prosthodontic and periodontic treatments. A close collaboration between dental professional is critical. Only a few studies (5,6,7,8,9) or case reports (4,10,11,12,13,14) and one review (15) have been published regarding the treatment of patients with aggressive periodontitis using dental implants. Since there is no consensus on treatment protocols and
their long-term outcomes as well as survival of implants placed in such patients, dentists are in general hesitant to use dental implants in GAgP. Host response determines the approach taken by the dental professional during the placement of the dental implants in patients with GAgP. Lang et al. suggested that such patients had poor serum antibody response to infective bacterial agents, which negatively affects the progression of the periodontitis (16). Yet, Mengel et al. suggested that partially edentolous patients treated for GAgP can be rehabilitated successfully with osseointegrated implants. The compromise is that the bone and attachment loss around the implants placed in GAgP were higher than in periodontally healthy cases (8) suggesting that the pathogenetic concerns heavily determine the outcomes. Thus, there is a strong need for more evidence towards the understanding of the tissue response to dental implants in GAgP. In this report, we provide support that such cases can be successfully treated using implants when a close collaboration between the periodontist and prosthodontist exist throughout the planning and treatment.

In a similar previous case report, subgingival microbiota was studied before and after complete edentulation and reconstruction with dental implants in a 45-year-old female patient with GAgP. At 4- to 6-month recall visits after definitive prosthetic reconstruction, microbiological culture of three inflamed peri-implant sites showed an almost identical spectrum of pathogens, including pathogenic bacteria characteristic of aggressive periodontitis. As natural teeth were absent for 8 months, the authors suggested that periodontal pathogens can be retained for a prolonged period in edentulous areas, from where they can later colonize and compromise the health of dental implants (13). Since this was the case, we have added antibiotics to the Phase I therapy and preferred a previously reported combination of metronidazole and amoxicillin. This combination has been reported to effectively reduce levels of Porphyromonas gingivalis, Actinobacillus
actinomycetemcomitans serotype b, Tannerella forsythia and Treponema denticola (17). Such a combination may be essential for the suppression of the periodontopathogens during the critical healing around dental implants.

Al-Zahrani suggested that clinicians need to consider some other important factors when planning implant placement in GAgP patients: An appropriate length of time between active periodontal therapy and implant placement must be determined. It must also be decided whether to extract all questionable teeth prior to the placement of implants. It is important to ascertain the influence of periodontally compromised teeth on the adjacent implant (15). Based on these suggestions, we have extracted all the questionable teeth as a part of the treatment prior to the connection of healing abutments. Mandibular third molars were retained since they had a good periodontal prognosis and were not “questionable”. Retention of these teeth also added psychological benefit to her for not being completely edentulous.

The patient in this case is young. Treatment with a removable prosthetics therefore, was considered not an ideal option. The alternative was to restore with the fixed dental prosthesis. However, advanced vertical bone resorption posed esthetic problems such as inadequate lip support. In order to overcome this limitation, extensive and advanced osseous grafting was necessary. To this end, such surgeries (autogenous bone blocks, sythetic grafts, distraction osteogenesis, etc) could not be performed due to financial limitations. Therefore, we have chosen a compromise by using implant supported overdentures (bar-retained) in order to restore dentition, support lips, and enhance esthetics and phonation. We have used regular diameter implants in this study. Even better results can be obtained if narrow body implants were used based on a recent report that the clinical outcome, survival rate, bone-level changes were shown to be favorable over 5–10 suggesting narrow implants could be
used with confidence where a regular diameter implant is not suitable (18). This finding was further supported in a recent review (19). Further research is needed if this would be applicable to the GAgP.

GAgP patients require a multidisciplinary approach for the dental treatment to re-gain appropriate function, aesthetics and comfort. Dental implants present a viable treatment approach in restoring the lost dentition in subjects with GAgP due to the early loss of teeth at a young age in life. In this case, the restored function and esthetics in a young aggressive periodontitis patient by dental implants was presented. The possibility of a progressive and continuous attachment loss and bone loss occurring around teeth and implants can not be ruled out and require long-term studies. The key to success is the close collaboration between the periodontist and the prosthodontist. GAgP presents a major challenge for conventional implantology. Therefore, a careful and meticulous prevention and maintenance regimen is crucial. This starts from the beginning at the planning stage and continues long after the restorations have been placed. In this case, all implants were successful according to the radiographic success criteria reported by Albrektsson et al (20). While the follow-up time is relatively short, no implants were lost encouraging the use of dental implants in the treatment of patients with GAgP.
References

Figure 3
Figure 1

Fig 1A: Preoperative intra-oral view

Fig 1B: Initial panoramic radiography

Fig 1C: Cone Beam Computed Tomography (Maxilla-Mandibula)

Fig 1D-E: First extraction session and immediate dentures

Figure 2

Fig 2A-B-C: The healing abutments were connected and teeth numbered 18,17, and 15 were extracted (Clinical - Radiographical view)

Fig 2D-E: Wax framework try-in for the maxilla and mandibula

Fig 2F: Final prosthesis, (intra-oral)

Fig 2G: Soft tissue profiles were evaluated in the frontal view, after delivery of the final prosthesis

Figure 3

Fig 3A: Periodontal and peri-implant conditions were stable over an 24-month follow-up period

Fig 3B: Panoramic radiography, 24 month after restoration
Table 1: The probing depths

* ≥ 10 mm
V: Vestibule
L: Linguale
P: Palatinale

	1	1	4	1	5	5	2	6	9	4	6	8	5	5	5	5	6	4	9	8	8	5	P			
2	2	4						4	5	5	4	4	5	1	1	1	2	1	7	5	5	5	2	2	5	V
2	2	3						4	1	9	9	5	2	3	3	5	2	7	4	3	3	5	4	4	V	

Click here to download Table: Table 1.doc
Table 2: Blood parameters

<table>
<thead>
<tr>
<th>Tests</th>
<th>Reference Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocyte</td>
<td>6.0 K/uL</td>
</tr>
<tr>
<td></td>
<td>4.0 – 10.0 K/uL</td>
</tr>
<tr>
<td>Lenfosite</td>
<td>2.0 K/uL</td>
</tr>
<tr>
<td></td>
<td>0.6 - 5.2 K/uL</td>
</tr>
<tr>
<td>Red Blood Cell</td>
<td>4.16 M/uL</td>
</tr>
<tr>
<td></td>
<td>4.00 – 6.00 M/uL</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>13.1 M/uL</td>
</tr>
<tr>
<td></td>
<td>12.0 – 18.0 M/uL</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>% 32.6</td>
</tr>
<tr>
<td></td>
<td>% 35.0 - 50.0</td>
</tr>
<tr>
<td>Glucose</td>
<td>89 mg/dl</td>
</tr>
<tr>
<td></td>
<td>70 – 110 mg/dl</td>
</tr>
<tr>
<td>HbA1C</td>
<td>% 5.1</td>
</tr>
<tr>
<td></td>
<td>% 4.5 – 5.7</td>
</tr>
<tr>
<td>Alkaline Phosphatase</td>
<td>106 U/L</td>
</tr>
<tr>
<td></td>
<td>90 - 290U/L</td>
</tr>
<tr>
<td>Acid Phosphatase</td>
<td>2 U/L</td>
</tr>
<tr>
<td></td>
<td>< 5.4 U/L</td>
</tr>
</tbody>
</table>
Copyright Form

Click here to download Copyright Form: 1.pdf
Copyright Form
Click here to download Copyright Form: 2.PDF
Copyright Form

Click here to download Copyright Form: 3.pdf
Click here to download Rebuttal Letter (for revisions): Rebuttal Letter.doc